Journal of Organometallic Chemistry, 173(1979) 317-324
D Elsevier Secquoia S.A., Lausanne - Printed in The Netherlands

THE UNEXPECTED FORMATION OF A MIXED BIS(η^{5}-PENTAMETHYLCYCLOPENTADIENYL)TETRACARBONYL(μ^{3}-ETHYLIDENE)TRIANGULOTRICOBALT COMPOUND AND ITS STRUCTURAL CHARACTERIZATION

WEBB I. BAILEY, JR., F. ALBERT COTTON and JACKIE D. JAMERSON
Department of Chemistry, Texas Ad. H Unilersity, College Station, Texas 77843 (U.S.A.)
(Received January 16th, 1979)

Summary

The title compound was first obtained photolytically from ($\eta^{5}-\mathrm{Me}_{5} \mathrm{C}_{5}$) Co$(\mathrm{CO})_{2}$ (by a mechanism not understood) and later by refluxing $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ with $\mathrm{Co}_{3}(\mathrm{CO})_{9} \mathrm{CCH}_{3}$. It was identified and characterized structurally by X-ray crystallography. The crystails belong to space group $P Z_{1} / n$ with $a 9.529(2), b$ 18.325(4), c14.801(3) $\AA, \beta 95.69(2)^{\circ}$ with $Z=4$, making one entire molecule the asymmetric unit. Using 2511 reflections with $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ the strueture was solved and refined to $R_{1}=0.051$ and $R_{2}=0.067$. It consists of a triangular pyramid with two ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) Co groups and one $\mathrm{Co}(\mathrm{CO})_{3}$ group in the base and CCH_{3} at the apex. The basal edge between the ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) Co groups has a bridging CO group and a Co-Co distance of $2.405(1) \AA$, while the other two unbridged $\mathrm{Co}-\mathrm{Co}$ distances are 2.484(1) and 2.501(1) \AA. The distances from the apical C atom to the bridged Co atoms are 1.857(6) and 1.866(6) \AA but $1.932(6) \AA$ to the unique Co atom. The $\mathrm{C}-\mathrm{C}$ distance in the ethylidyne group is $1.497(9) \AA$. The structure is closely similar to that of the analogous $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}_{3}(\mathrm{CO})_{4} \mathrm{CCH}_{3}$ compound.

Introduction

In an initial attempt to prepare $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3} \mathrm{Co}_{3}(\mathrm{CO})_{3}$, we obtained instead a different trinuclear compound. The identity and structure of this compound, conclusively established by X-ray crystallography, are as shown schematically in I. Once the identity of the substance was known a rational preparative method was devised and its structure compared to that of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}_{3}-$ $(\mathrm{CO})_{4} \mathrm{CCH}_{3}$ which had previously been described by Elder, Robinson and Simpson [1] and structurally characterized by McCallum and Penfold [2].

(I)

Experimental
All operations were performed in an atmosphere of dry nitrogen. Non-chlorinated solvents were dried with potassium/benzophenone and distilled under nitrogen immediately prior to use. Chlorinated solvents were dried with molecular sieves and freeze-thaw clegassed before use. Dicobaltoctacarbonyl was purchased from Alfa Products, Danvers, Ma. Pentamethylcyclopentadiene was prepared by the method of Whitesides [3].

Preparation by photolysis. $1.84 \mathrm{~g}(5.24 \mathrm{mmol}) \mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $2.90 \mathrm{~g}(21.32$ $\mathrm{mmol}) \mathrm{Me}_{5} \mathrm{C}_{5} \mathrm{H}$ was dissolved in $30 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was freeze-thaw degassed and heated to $45^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was concentrated with a water aspirator and the remaining liquid chromatographed on Florisil. $\mathrm{Me}_{5} \mathrm{C}_{5} \mathrm{Co}(\mathrm{CO})_{2}$ was eluted by developing the column with hexane. The hexane solution of $\mathrm{Me}_{5} \mathrm{C}_{5} \mathrm{Co}(\mathrm{CO})_{2}$ was photolyzed (Hanovia 450 W me-dium-pressure lamp) in a quartz flask at room temperature. After 5 days the solvent was removed in vacuo leaving a dark solid. Green crystals of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2^{-}}$ $\mathrm{Co}_{3}(\mathrm{CO})_{4}\left(\mu^{3}-\mathrm{CCH}_{3}\right)$ were obtained from a THF/hexane solvent mixture. Infrared spectrum (hexane): $\nu(\mathrm{CO}) 2030 \mathrm{~s}, 201.2 \mathrm{~s}, 2005 \mathrm{~s}, 1830 \mathrm{~m} \mathrm{~cm}^{-1}$.

Second preparative method. Once the identity of the compound was recognized, the following deliberate preparative method was devised, beginning with $\mathrm{Co}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{CCH}_{3}\right)$, which was obtained by a literature method [4]. The purple solid was treated with 2 equivalents of $\mathrm{Me}_{5} \mathrm{C}_{5} \mathrm{H}$ in refluxing THF. After heating for 4 h , the solvent was removed in vacuo. The reaction solid was chromatographed on Florisil by elution with hexane to give a green band identified by IR as $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Co}_{3}(\mathrm{CO})_{4}\left(\mu^{3}-\mathrm{CCH}_{3}\right)$. This was then recrystallized as above.
X-ray crystallography. A dark green crystal measuring approximately $0.27 \times$ $0.43 \times 0.12 \mathrm{~mm}$ was sealed in a glass capillary. Data were collected at $21 \pm 3^{\circ} \mathrm{C}$ on a Syntex $\mathrm{P} \overline{1}$ automated diffractometer using Mo- K_{α} radiation monochromatized with a graphite crystal in the incident beam. The automated centering and auto-indexing procedures have previously been described [5]. Systematic absences $h 0 l, h+l=2 n+1$ and $0 k 0, k=2 n+1$ indicated that the space group was $P 2_{1} / n$ (a non-standard setting of $P 2_{1} / c$). The principal crystallographic data are as follows: a 9.529(2), $b 18.325(4), c 14.801(3) \AA, \beta 95.69(2)^{\circ}, V$ $2571.6(9) \AA^{3}$ and $d_{\mathrm{calc}}=1.514 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=4$ and a molecular weight of 586.52. A total of 3534 unique reflections with $0.0^{\circ}<2 \theta \leqslant 45.0^{\circ}$ were collected using the $\theta-2 \theta$ scan technique. Mo- K_{α} linear absorption coefficient for this crystal is $8.79 \mathrm{~cm}^{-1}$. No absorption corrections were made. Data collection methods have previously been described [5].

Fig. I. An ORTEP drawing of the molecule. Atoms are represented by their ellipsoids of thermal vibration scaled to enclose 50% of the electron density.

Solution and refinement [6]. Direct methods using the program MULTAN, revealed the positions of the cobalt atoms. The coordinates of these three atoms were refined by least squares to give discrepancy factors of
$R_{1}=\left(\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{0}\right|=0.300\right.$
$R_{2}=\left[\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w\left|F_{0}\right|^{2}\right]^{1 / 2}=0.385$
 equal to $4 F_{0}{ }^{2} / \sigma\left(F_{0}{ }^{2}\right)$. All structure factor calculations and least squares refinements were executed using those 2541 reflections for which $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$. Atomic scattering factors were those of Cromer and Waber [7]. Anomalous dispersion effects were included in the calculated scattering factors for cobalt [8]. After refining the three cobalt positions, subsequent difference Fourier maps revealed the remaining non-hydrogen atoms. All non-hydrogen atoms were refined anisotropically to convergence using full-matrix least squares to give final discrepancy factors of $R_{1}=0.051$ and $R_{2}=0.067$ *. The error in an observation of unit weight was 1.492. A final difference Fourier map was essentially featureless.

[^0]POSITIONAL AND THERMAL PARAMETERS FOR $\mathrm{Cp}_{2} \mathrm{Co}_{3}(\mathrm{CO})_{3}\left(\mu^{3}-\mathrm{CMe}\right)$ AND THEIR ESTIMATRD STANDARD DEVIATIONS ${ }^{a}$, 6

Atom	X	Y	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	$\beta_{2,3}$
$\mathrm{Co}(1)$	0.42970(9)	0.30279(5)	$0.37567(7)$	0.0081(1)	$0.00333(3)$	0,00420(5)	0,000i3(1)	0,0018(1)	
$\mathrm{Co}(2)$	0,59018(9)	0.22680(5)	0.29236(6)	$0.0092(1)$	$0.00245(3)$	$0,003 \cdot 15(5)$	0,0002(1)	-0,0003(1)	-0.00050(i)
$\mathrm{Co}(3)$	0,61405(9)	0.35732(5)	$0.28717(6)$	0,0086(1)	$0.00255(3)$	$0.00317(4)$	-0,0003(1)	0,0007(1)	$0.00002(i)$
O(1)	$0.2031(7)$	0,1962(4)	$0.3766(6)$	0.0171 (8)	$0.0080(3)$	$0.0136(6)$	-0.0137(8)	0,0059(12)	$0.0007(8)$
O(2)	'0.2506(7)	0.4296 (4)	0.3781 (6)	0.0203(9)	$0.0062(3)$	$0.0133(5)$	$0.010 \cdot 4(8)$	0,0125(11)	$0,0026(7)$
O(3)	$0.6737(8)$	0.2951 (7)	0.5591 (5)	$0.0198(10)$	0.0229 (9)	0.0055(4)	$0.0170(15)$	$-0.0001(11)$	$-0.001 .4(10)$
O(4)	$0.8096(5)$	0.2852 (3)	$0.4180(4)$	$0.0109(6)$	$0.0039(2)$	0.0059 (3)	0.0011 (6)	$-0,0037$ (8)	$-0.0005(4)$
C(1)	0.2940(9)	$0,2372(5)$	$0.3782(7)$	$0.0154(12)$	$0.0052(4)$	0.0072(6)	$-0.0016(12)$	$0,00.45(1.1)$	$0.0006(8)$
C(2)	$0.3254(8)$	0.3816 (5)	$0.3775(6)$	$0.0136(10)$	0.0045 (3)	$0.0066(5)$	$0.0022(10)$	$0.0075(11)$	$-0,0002(7)$
C(3)	0.6191 (9)	0,2975(6)	$0.4875(6)$	$0.0104(10)$	$0.0090(5)$	0.0049(5)	0.0045(12)	$0.0025(12)$	$-10,0009(8)$
C(4) $C(5)$	$0.7116(7)$	0,2887 (4)	0,3616(5)	$0.0083(8)$	0.0032(2)	0.0035(3)	$0.0006(8)$	$-0.0012(9)$	-0,0010(5)
C(6) $C(6)$	0.4611 (7)	0,2975(4)	0,2489(5)	0.0097 (8)	0,0029(2)	0,0036(3)	$0.000 \cdot 4(8)$	$-0.0007(9)$	-0,0002(5)
C(6) C 2,1$)$	$0.3555(9)$	$0.3008(5)$	0.1671 (6)	0.0140(11)	0.0044 (3)	$0.0055(5)$	-0,0006(10)	$-0.0072(12)$	- $0.00005(7)$
C(2,2)	0.7000(9)	$0.1152(4)$ $0.1310(4)$	$0.3190(6)$ $0.3348(6)$	$0.0199(13)$ $0.0196(12)$	$0.0027(3)$	$0.0061(5)$	$0,0013(10)$	$0.0027(14)$	$0.00088(6)$
C(2,3)	0.7474(8)	$0.1592(1)$	0.25.13(5)	$0.0140(10)$	0,0030(3)		0,0063 (9)	-0,00.49(13)	-0.0008(6)
C(2,4)	0.6295 (9)	0.1587(1)	0.1842 (5)	$0.0156(11)$	$0.0031(3)$	$0.004 .4(4)$	$0.0019(0)$	000.4(11)	-0.0023(6)
C(2,5)	0.5102(9)	0.1318(4)	0.2243 (6)	0.0167 (12)	0.0029(3)	$0.0054(5)$	-0,0017(9)	-0,0014(13)	-0.0023(6)
C(2,6)	$0.4653(13)$	$0.0783(5)$	$0.3851(7)$	$0.0358(19)$	$0.0035(3)$	$0.0095(6)$	$-0.0025(14)$	$0.0148(18)$	0.00.40(7)
C(2,7)	$0.7884(12)$	$0.1184(5)$	0.4230(7)	0.0282(17)	$0.0050(4)$	$0.0062(6)$	$0.0088(14)$	-0.0096(17)	-0,0008(8)
C(2,8)	0.8993 (9)	0.1811 (6)	$0.2427(8)$	$0.0138(12)$	$0.0054(4)$	$0.0108(7)$	0,0025(12)	$0.0006 .1(13)$	- 11.0027 (9)
C(2,9)	0.6334(11)	0.1795 (5)	$0.0859(6)$	0.0266 (16)	0,0049(3)	$0.00344(4)$	0,0038(13)	$0.0029(14)$	-0,001:3(6)
C $(2,10)$	$0.3669(10)$	0.1175 (5)	0.1740 (8)	$0.0147(12)$	0.0047 (3)	$0.0114(7)$	$\cdots 0.00 .4 .4(11)$	$-0.0055(16)$	-0.00.45(9)
C $(3,1)$	$0.6262(8)$	$0.4700(1)$	$0.3135(5)$	0.0175 (11)	0,0023(2)	0.00.16(4)	-0.002.4(9)	$0.00390(11)$	$-0.0001(5)$
C(3,2)	$0.7617(8)$	$0.4423(4)$	0.3220 (6)	0.0110 (9)	$0.0031(3)$	$0.0062(5)$	-0,0038(8)	$-0.0011(11)$	0,0010(6)
C(3,3) C(3,4)	0.7844 (8)	0.4094(4)	0.2370 (6)	0.0133 (10)	$0.0033(3)$	$0.0077(5)$	-0.0021 (9)	$0,0070(12)$	$0.00150(\mathrm{i})$
$C(3,4)$ $C(3,5)$	0.6595(9)	0.4195 (4)	$0.1763(5)$	$0.0197(13)$	$0.0033(3)$	$0,00433(4)$	$-6.0021(10)$	$0,0023(12)$	0.0020(6)
C $(3,5)$ C $(3,6)$	$0.5617(8)$	0.4577 (4)	$0.2228(5)$	$0.0134(10)$	$0.0028(2)$	$0.0038(4)$	$0.0006(8)$	$0.0013(10)$	$0,0005(5)$
C(3,6) C(3,7$)$	0.5639(12)	$0.5132(5)$	$0.3878(6)$	0.0341 (19)	$0.0035(3)$	$0.006415)$	$-6.0025(18)$	$0.0129(15)$	$-10.0029(7)$
C(3,7$)$ (3,8)	$0.8707(11)$ $0.9305(10)$	0.4489 (5)	$0.4037(7)$	0,0245(15)	$0.0052(4)$	$0.0088(6)$	-0.011(6(12)	$-0.012 .4(16)$	0,0022 (8)
C(3,9)	0.6457(13)	$0.3797(6)$ $0.3979(6)$	$0.2167(8)$ $0.0751(16)$	$0.0171(12)$ $0.0390(22)$	$0.6061(4)$	0.0150(8)	$0.0005(12)$	$0,019.1(15)$	$0.0026(10)$
C(3,10)	0.4214(11)	$0.4864(5)$	0.1823(8)	$0.0178(14)$	0,0046(3)	$0.0107(7)$	$0,0032(12)$	$-0.00 .46(17)$	0.0050(8)

[^1]
BOND LENGTHS IN $\mathrm{Cp}_{2} \mathrm{CO}_{3}(\mathrm{CO})_{4}\left(\mu^{3}-\mathrm{CCH}_{3}\right)^{a}$

$C o(1)-C o(2)$	$2.484(1)$
$C o(2)-C o(3)$	$2.405(1)$
$C o(3)-C o(1)$	$2.501(1)$
$C o(1)-C(1)$	$1.768(9)$
$C o(1)-C(2)$	$1.754(8)$
$C o(1)-C(3)$	$1.788(9)$
$C o(1)-C(5)$	$1.932(6)$
$C o(2)-C(4)$	$1.855(6)$
$C o(2)-C(5)$	$1.857(6)$
$C o(3)-C(4)$	$1.859(6)$
$C o(3)-C(5)$	$1.866(6)$
$C o(2)-C(2.1)$	$2.114(7)$
$C o(2)-C(2.2)$	$2.108(6)$
$C o(2)-C(2.3)$	$2.065(6)$
$C o(2)-C(2,4)$	$2.094(6)$
$C o(2)-C(2.5)$	$2.116(6)$
$C o(3)-C(3.1)$	$2.102(6)$
$C o(3)-C(3.2)$	$2.128(6)$
$C o(3)-C(3.3)$	$2.083(7)$
$C o(3)-C(3.4)$	$2.077(6)$
$C o(3)-C(3,5)$	$2.108(6)$
$C(1)-O(1)$	$1.146(9)$
$C(2)-O(2)$	$1.134(8)$
$C(3)-O(3)$	$1.134(10)$
$C(4)-O(4)$	$1.190(7)$
$C(5)-C(6)$	$1.497(9)$

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the last significant digits.

Results

The molecular structure is shown in Fig. 1 and the atom numbering scheme is fully defined in Fig. 2. The atomic positional and thermal parameters are listed in Table 1. Bond distances and angles are given in Tables 2 and 3, respectively. The entire molecule constitutes the asymmetric unit and, hence, no sym-

Fig. 2. A schematic drawing of the molecule in which the atomic numbering scheme is defined.

${ }^{a}$ Numbers in parentheses are the estimated standard deviation in the last significant digits.
metry is crystallographically imposed. In fact, there is a virtual plane of symmetry containing $\mathrm{Co}(1), \mathrm{C}(5), \mathrm{C}(4)$ and $\mathrm{O}(4)$.

The central motif of the structure is a distorted tetrahedron consisting of three cobalt atoms and one carbon atom, $C(5)$. One edge, $C o(2)-C o(3)$, is bridged by a carbonyl group and this metal-metal bond, with a length of $2.405(1) \AA$ is significantly shorter than the other two unbridged edges, with lengths of $2.484(1)$ and $2.501(1) ~ \AA$. In a related pattern, there are differences among the $\mathrm{Co}-\mathrm{C}$ distances in the tetrahedron: The unique one, $\mathrm{Co}(1)-\mathrm{C}(5)$, is longer, $1.932(6) \AA$, by a significant amount, than the other two which are essentially equal at $1.857(6)$ and $1.866(6) \AA$.

Each of the atoms of the central tetrahedron has certain appendages. A methyl group is attached to the carbon atom, and one of the cobalt atoms, $\mathrm{Co}(1)$, has a set of three carbonyl groups, just as in the well-known $\mathrm{Co}_{3}(\mathrm{CO})_{9}-$ CR type structures. Each of the other cobalt atoms has one $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ group plus one bond to the bridging CO group, which, formally, is electronically equivalent to a set of three terminal CO groups.

None of the distances or angles in this molecule can be considered unusual. There are apparent small differences in certain dimensions as compared to those in the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Co}_{3}(\mathrm{CO})_{4}\left(\mu-\mathrm{CCH}_{3}\right)$ analog, but these are only at about the threshold of statistical significance and may not be real. Thus, the $\mathrm{C}-\mathrm{C}$ distance in the ethylidyne unit, $1.55(3) \AA$, found in that work is not significantly different from $1.50(1) \AA$ found here. The corresponding Co-Co distances differ by $0.037 \AA$, for the bridged one and $0.015 \AA$ for the averages of the others. These are, respectively, ca. 10 and ca. 4 times the esds. If they are real, as they appear to be, in a statistical sense, they perhaps indicate a slight expansion of the Co_{3} triangle because of steric crowding caused by the $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups.

The mean planes of the ring and methyl carbon atoms were calculated for each ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) ring and the distances of the Co atoms from each of these planes. These results showed that the methyl groups are distinctly bent away from the metal atoms. For the ring attached to $\operatorname{Co}(2)$ the mean plane of the methyl groups is $0.08(1) \AA$ away from the ring plane and for the ring attached to $\operatorname{Co(3)}$ it is $0.11(1) \AA$ away from the ring plane.

Acknowledgement

We are grateful to The Robert A. Welch Foundation for financial support under Grant No. A494.

References

[^2]ture and the production of the derived results were done usink the Molecular Structure Corporation PDP-IIfis computer and the Enraf Nonius Structure Determination Package with programs written chiefly ling Frenk and Ohaya.
7 D.T. Cromer and J.T. Waber. International Tables for X-Katy Crystallopraphy, Vol. IV. Kynoch Dress, Birmingham. Endiand, 1974. Table 2.3.1.
8 D.t. Croner and D. Liberman, I. Chem. Phys., 53 (1970) 1891.

[^0]: * The table of structure factors may be obtained upon request from F.A.C.

[^1]: $\left(i_{1}\right)^{2}+\beta_{2} k^{2}+$

[^2]: 1 P.A. Elder, B.H. Robinson and J. Simpson, J. Chem. Soc. Dalton, (1975) 1771.
 2 R.S. MeCallum and B.R. Penfold, Acta Cryst.. B34 (1978) 1688.
 3 D. Feitler and G.M. Whitesides, Inorg. Chem., 15 (1976) 466.
 4 R. Markby, I. Wender, R.A. Friedel, F.A. Cotton and H.W. Sternberg. J. Amer. Chem. Soc., 80 (1958) 6529.

 5 F.A. Cotton, B.A. Frenz, G. Deganello and A. Shaver, J. Organometal. Chem., 50 (1973) 227.
 6 The initial work was performed on an Amdahl 470 computer using the following programs: DATARED, a data reduction program by Frenz: FAME, by Dewar for generating E's: MULTAN, by Main, Woolfson, and Germain for direct methods: FOURIER, a crystallographic summation program by Dellaca and Robinson based on Zalkin's FORDAP: NUCLS, a least-squares program by lbers and Doedens: and SADIAN, a program for calculating atomic distances and angles by Baur. The final refinement of the struc-

